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Abstract each category. Different from traditional object detection

Automatic checkout system (ACO) has been gaining in-
creasing interest in recent years due to its practical value.
Different from traditional object detection and recognition
problem, ACO is faced the problem of domain shifting. The
model learns the pattern from single object images but pre-
dicts on multi-object images which usually have totally dif-
ferent distribution than the training images. Existing work
tried to solve the problem by data augmentation. We further
develop the data augmentation solution by using a more ef-
ficient salient object detection algorithm and image inpaint-
ing to improve the realism of synthesized images. We first
remove the background by using salient object detection al-
gorithm, and combine the objects together on a plain white
background. After this, we use image inpainting to learn
the image background from ground-truth images and use
the model to improve the realism of synthesized images. We
use the images to train a FPN detector and experiments on
large scale Retail Product Checkout (RPC) dataset shows
that we achieve 63.32% checkout accuracy, which is higher
than the 56.68% baseline accuracy.

1. Introduction

With the advent of no-man store in the retail industry,
checkout automation has been gaining increasing interest
in recent years. As one of the most time-consuming ex-
perience for customers in stores, checkout was improved
throughout history by technologies such as barcodes and
QR code. In recent years with the rapid development of
computer vision technique, it is possible to further improve
checkout efficiency by using automatic checkout system.
(ACO) Customers no longer need to wait in long lines in
the counter. They can simply take a photo of their shopping
items in their basket and ACO should be able to generate
an exact shopping list for the customer. ACO system can
bring brand-new shopping experience for customers in re-
tail stores.

ACO is technically an object detection and recognition
problem. With a shopping image as the input, ACO should
detect all the items in the image and count the number of

problem, the main challenge of ACO is related to domain
shifting. The training data are normally single object im-
ages with multiple views located at the center. In checkout
setting, predictions are normally performed on images with
multiple objects with totally different distribution from the
training data. Thus, successful ACO should be able to iden-
tify the object from the source domain (single object image)
to the target domain. (multiple object image)

Existing work [12] tried to solve the problem by data
augmentation. They used a salient object detection algo-
rithm and cycle-GAN to synthesize images which imitate
the real-world checkout settings. However, this method for
data augmentation is computational expensive and requires
long time to synthesize large number of images.

In our project, we improve the data augmentation phase
by using a deep learning based salient object detection al-
gorithm proposed in [3]. This algorithm is much faster
than the original one and produces better results. For ren-
dering, we use image inpainting [[7] to render high qual-
ity real-world images instead of cycle-GAN method which
we found very hard to train. We used FPN [6] with ROI
align as our network structure to train the detector. Exper-
iments on the large-scale Retail Product Checkout (RPC)
dataset [[12] shows that we have achieved 64.32% checkout
accuracy which is higher than the 56.68% baseline accu-
racy.

2. Related Work

In this section, we review previous work that also focus
on ACO problem.

2.1. RPC: A Large-Scale Retail Product Checkout
Dataset

This work [[12]] is published by face++, which is the team
that provided this dataset. They also proposed a method for
ACO problem and we treat it as a baseline.

They use a salient object detection algorithm proposed
in [4]], which is based on traditional image processing algo-
rithm. This method is very complicated and computational
expensive. Instead, we use a deep learning based salient
object detection algorithm proposed in [3] to make an im-



Figure 1. All the objects are top-viewed, arranged evenly with no
overlapping.

provement. For rendering, instead of cycle-GAN, we use
image inpainting. The network we used are more or less the
same. We modified the ROI pooling to ROI align to make a
little improvement than their work.

2.2. Data Priming Network

(3] is a paper published online on April 10th, which
works on exactly the same task.

The training of ACO system is challenged by the domain
adaptation problem, in which the training data are images
from isolated items while the testing images are for collec-
tions of items. To solve this problem, [5] propose to use
method proposed in [3]] as a data argumentation method
which is exactly the same with us to generate synthesized
images. However, image synthesis leads to unreal images
that affect the training process. In our paper, we use image
inpainting to make the synthesized images more realistic
and then use FPN improved with Rol align for detection.
Instead of image inpainting and FPN used by our paper, [3]
propose a data priming network using detection and count-
ing collaborative learning, and select more reliable images
from testing data to train the final visual item tallying net-
work.

3. Data

In this section, we will introduce what dataset we use
and the detailed usages of the dataset.
The dataset we use are provided by face++ [12], which

contains SKUs of 200 categories. In total, there are 53739
single-product exemplar images with multi-perspective
view of the objects, and 30000 real world checkout images
with multi-objects.

3.1. Usage of the Dataset

The usage of the dataset are divided into two parts: syn-
thesizing images and using real world checkout images pro-
vided in the dataset.

1. Single Object Images

Main component of this dataset are single object im-
ages. However, we decide not to use them for train-
ing because of the following reasons. Firstly, As we
are using Faster RCNN and FPN in this phase, using
this kind of training data will cause training failure of
RPN in Faster RCNN because all those objects are in
the center of the image. Secondly, using images with
single object to train our network cannot help much
on predicting multiple objects in an image. Thirdly,
the background of those training images are not like
the realistic checkout environment, which may lead
to low accuracy when applying the network to real-
ity. Thus, we use single-object images to synthesize
our own multi-object checkout images.

2. Multi-Object images

For 30000 real world multi-object checkout images,
we divide them into training set with 24000 images and
test set with 6000 images. However, the problem here
is that all the checkout images are biased. As shown in
figure.1, all the checkout images are top-viewed with
no overlapping, which is not the case in real world. So
we only take the testing accuracy of these data as a tar-
get, we will finally use our rendered data for training.

3.2. Plan of using the Data

1. Use synthesized multi-object images for training.

2. Use multi-object real world checkout images for train-
ing.

3. Concatenate the synthesized data and rendered data to-
gether for training.

4. Methods

In this section, we will explain in detail about the tech-
nical approach we use for data augmentations and network
we use for object detection.



Figure 2. Original Image Using Salient Object Detection, and finally matting the object.

4.1. Data Augmentation

As we mentioned in previous section, the goal of our data
augmentation is to synthesize large number of multi-object
training images which are realistic. The multi-object im-
age synthesize pipeline we propose consists of three parts:
matting, synthesize and render.

1. Matting

The first step of our image synthesis is matting the ob-
ject in the single-object images. Since our dataset does
not contain the information of segmentation, we have
to find another way to mat them out.

We first try a naive way which is using bounding boxes
of each object to mat them out from the images. How-
ever, as shown in figure3, the result is totally not real-
istic. And this problem becomes even worse if the ob-
ject is placed in other views. Our network may mem-
orize this pattern during the training phase, and finally
causes the failure of this task.

Our second approach is using KNN matting proposed
in [1l], as we using this method, we find two serious
problem. The first problem is that KNN matting re-
quires trimap, so we have to label all the images by our
self. The second problem is that it takes 3-4 minutes
to matting a single images, which is long if we want to
mat all 53739 images. Thus, we finally decided not to
use it.

Our final approach is to use salient object detection.
We’ve compare the different method of salient object
detection in [3] and [4]. Method proposed in [4] is
based on image processing algorithm, it is very com-
plicated and computational expensive. We find that
the method proposed in [3] has both the high level
semantic information and low level textual informa-
tion, which is suitable for this task. However, the net-
work proposed in this work is very sensitive to dark
background. So we set the background to grey to turn
off the background noise, and make the object darker.
Then we feed our pre-processed images into the net-
work to get the salient map.The result are shown in
figure.11.
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Figure 3. Our Matting Using Bounding Box, which is not that re-
alistic.

2. Synthesize

After obtaining the salient map, we multiply the
salient map with the original images to get the object.
Our synthesize method is similar to the method pro-
posed in [[1]. The objects are randomly selected and
freely placed on a grey background image such that
the occlusion rate of each instance less than 50 per-
cent. Thus, our synthesized images will have multi-
perspective view of the objects instead of top-viewed
object. And the result is shown in figure.12.

. Render

After the synthesis step, domain gap still exists be-
tween the synthesized images and checkout images.

It is easy to tell the difference between the images from
these two domains by observing lighting conditions or
shadow patterns. In order to render the synthesized
images similar to real-world checkout setting, we em-
ploy Cycle-GAN [13] to translate these images into
the checkout image domain.

However, it is really hard to train a powerful Cycle-
GAN model and after 4-day-training, the result, shown
in figure.4. is quietly terrible. It seems quite difficult
for the model to learn the object pattern and the back-
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Figure 4. Result of CycleGAN after 4 days of training

ground at the same time. So we propose to use image
inpainting to render the synthesized images.

For the inpainting method, [7] propose the use of par-
tial convolution, where the convolution is masked and
re-normalized to be conditioned on only valid pixels.
They further include a mechanism to automatically
generate an updated mask for the next layer as part of
the forward pass. Nevertheless, in our case, we only
need to inpainting the background, so we use pairwise
data of real checkout image, shown in figure.6, gener-
ated by using the bounding box of the image to feed in
the model during the training time. And for the test-
ing time, we feed in pairwise data of our synthesized
images.

A key element in this implementation is the partial
convolution layer. Basically, given the convolution fil-
ter W and the corresponding bias b, the following par-
tial convolution is applied instead of a normal convo-
lution:

if sum(M)>0
xr =

, WX o M)W +b,
0, otherwise
where © is element-wise multiplication and M is a bi-
nary mask of Os and 1s. Importantly, after each partial
convolution, the mask is also updated, so that if the
convolution was able to condition its output on at least
one valid input, then the mask is removed at that loca-

tion, i.e.

1, if sum(M)>0
otherwise

The result of this is that with a sufficiently deep net-
work, the mask will eventually be all ones. Essentially
the inpainting network, shown in Fig.7 is based on a
UNet-like structure, where all normal convolution lay-
ers are replace with partial convolution layers, such
that in all cases the image is passed through the net-
work alongside the mask.

4.2. Network Structure and Algorithms

1.

Choice of main framework

There are many kinds of mainstream frameworks for
object detection, and these network architectures can
be classified as one-stage network and two-stage net-
work. It is generally concluded that one-stage net-
works like SSD [8]] and YOLO [10]] run faster and two-
stage networks like Faster R-CNN [11] have higher
prediction accuracy. Since ACO task requires high
prediction accuracy, we chose Faster R-CNN as the
main framework.

2. Feature Pyramid Networks

S.

Due to the lack of segmentation information of our
dataset, we use Faster R-CNN [L1] rather than Mask
R-CNN [2]. To improve the prediction accuracy of the
model, FPN [6] and Rol-align are added to the Faster
R-CNN framework, shown in figure.§. FPN [6] , com-
bines low-resolution, semantically strong features with
high-resolution, semantically weak features via a top-
down pathway and lateral connections. This feature
pyramid has rich semantics at all levels and is built
quickly from a single input image scale, which con-
tributes to higher prediction accuracy. Unlike the Rol
pooling layer that adjusts the input proposal from RPN
to fit the feature map correctly, Rol-align, proposed by
He et al, simply takes the object proposal and divides
it into a certain number of bins. In each bin, a certain
number of points are sampled and value at those points
is determined using the bi-linear interpolation, which
helps avoid the misaligned problem which occurs in
Rol pooling.

Experiments

5.1. Implementation Details

The detection part is implemented by PyTorch [9]. Each

mini-batch consists of 2 image on each GPU and we set the
number of detections to be 256 for each image. We use the
SGD optimization algorithm to train the network, and set
the weight decay to be 0.0001 and momentum is set to be
0.9. For the detection part, the initial learning rate is 0.01
for the first 120k iterations, which decays by a factor of 10



Figure 5. Our result of prediction.The color of the bounding box represent the category of the object.

Figure 6. Our input images and its mask(real world checkout images) as the input of the partial convolution neuron network

for the next 40k iterations. The training of detection part is
conducted on a desktop with 1 Nvidia TITAN X GPU.

The setting for the inpainting network model is similar to
that of [7]]. And this network is implemented by Keras. As
the instructions from the paper, Holes present a problem for
Batch Normalization because the mean and variance will be
computed for hole pixels, and so it would make sense to dis-
regard them at masked locations. However, holes are grad-
ually filled with each application and usually completely
gone by the decoder stage. In order to use Batch Normal-
ization in the presence of holes, we first turn on Batch Nor-
malization for the initial training using a learning rate of
0.0002. Then, we fine-tune using a learning rate of 0.00005
and freeze the Batch Normalization parameters in the en-
coder part of the network. The training of inpainting part

are conducted on a server with 2 Nvidia 1080Ti GPUs with
a batch size of 2.

5.2. Evaluation Protocol

Checkout accuracy (cACC) [12] is introduced as the
main evaluation metric we use for the ACO task. Given
i images and k different product category, (CD; ) repre-
sents the counting error for a specific product category in
an image, where Pik is the predicted label and GT; 1, is the
ground truth label.

CD; i =|Pr — GT; kl,

Then, CD; is defined to represent the total counting error
for the i-th image. CD; = 0 suggests a fully correct predic-



Method Our Result | Face++ | University of Chinese Academy of Sciences
Synthesize cAcc 0.0008 0.0927 0.0927
Synthesize + Render cAcc 0.6332 0.5668 0.8051

Table 1. cAcc comparison with related work.

Figure 7. Network of image inpainting

’ Method \ cAcc \ threshold ‘

0.0008 0.50

Synthesize 0.0000 0.75
0.0000 0.90

0.6245 0.50

Render + Synthesize | 0.6332 0.75
0.4910 0.90

0.9263 0.50

Checkout 0.9458 0.75
0.9430 0.90

Table 2. cAcc of Our Result.
tion on the image.

K
CDix =Y CDjy,

k=1

Checkout accuracy is then defined to evaluate the pre-
diction accuracy of the model. §(-) returns 1 if and only
if Zszl CD; = 0; This means that a prediction list is
considered successful only if its exactly the same with the
ground truth shopping list.

Zf\; 5(2?:1 CD;,0)

A =
cAcc N ,

5.3. Inpainting Result and Analysis

The performance, shown in figure.8 of PConv network
is much better than Cycle GAN. It can make up not only

the background of the masked image but also the shadow
and light condition of the objects by partial convolution.
Such changes render the synthesized images and overcome
the domain adaptation problem to some extent. However,
it could be seen that there are some small black points on
the predicted image. Though it has been tested that such
noise does not influence the detection result, there are still
much room of improvements for Inpainting Network. Due
to the limit memory of GPU, we have to resize our im-
age from a high-resolution (1840,1840) to a low-resolution
(512,512). As a result, the predicted image will also have a
low-resolution, which contribute to the noise on our resulted
image due to partial convolution.

5.4. Detection Result and Analysis

As we mentioned in data section, we first use the check-
out image to train our network as a target result. We divide
the 30000 checkout images into two part: 24000 train im-
ages and 6000 validation images. After one week of train-
ing, the prediction accuracy (denoted by No Augmentation)
is pretty high. As we mentioned in data section, both the
training data and testing data are in same pattern: all the
objects are placed in the same way, no overlapping and all
the object are top-viewed, and the light condition are almost
the same. The result is biased in a way that the real-world
checkout settings would be much more complex.

Thus, training with synthesized images is necessary. We
synthesis 25000 checkout images by ourselves using the
60000 single-object images(haven’t been rendered). How-
ever, network training by such synthesized data (denoted by
Syn) fails in every level because of the huge gap between the
exemplars and the checkout images, confirming the prob-
lem of domain difference. It is easy to tell the difference
between the images from these two domains by observing
lighting conditions or shadow patterns.

As we running our test, we find that the failure is mainly
because the network cannot locate the position of the ob-
ject. Once the network locate the object, the accuracy of
classification of this object is pretty high. So we think that
the background and the shadow of objects are also very im-
portant for the network to locate the position of the object.
So we further use image inpainting to learn the background
and the shadow of the object.

We employ Inpainting method [7] to translate these im-
ages into the checkout image domain and get rendered im-
ages. Then. we train detectors with both the rendered im-
ages and the synthesized ones, denoted by Syn+Rendered
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Figure 8. The result of our synthesized image after image inpainting..

Figure 9. Network of FPN

More visual examples with different training data are shown
in figure.5.

Our result are shown in Table2. and Table3., where
AR is average recall, AP is average precision, IoU... area
is the size of the bounding box we want to detect, where
’small’ means the size of an object is less than 322, *'medium
means the size of an object is less than 962 and greater
than 322, ’large’ means the size of an object is greater than
962.There’s no objects with size less than 322, so the pre-
cision and recall are all 0.MaxDets means the threshold of
max number of detection. And the result comparison are
shown in Tablel.

For the inference time, it takes about 0.96s on GPU and

5s on CPU for one image.

6. Conclusion

In this project, we have synthesized real-world checkout
images using salient object detection algorithm and image
inpainting. Multi-object checkout images were first used to
train a FPN detector and have achieved 94.58% checkout
accuracy. To further address the problem of domain shift-
ing, we use synthesized checkout images as training data
but the checkout accuracy was extremely. Further improve-
ment was made by using both synthesized and rendered im-
ages as training data. The checkout accuracy increased to



| Method | AR | AP | ToU | Area | maxDets |
0.056 | 0.030 | 0.50:0.95 all 1
0.096 | 0.098 0.50 all 10
synthesize 0.096 | 0.013 0.75 all 100
0.000 | 0.000 | 0.50:0.95 small 100
0.040 | 0.000 | 0.50:0.95 | medium 100
0.096 | 0.030 | 0.50:0.95 large 100
0.440 | 0.792 | 0.50:0.95 all 1
0.834 | 0.986 0.50 all 10
Render + Synthesize 0.834 | 0.944 0.75 all 100
0.000 | 0.000 | 0.50:0.95 small 100
0.040 | 0.007 | 0.50:0.95 | medium 100
0.835 | 0.792 | 0.50:0.95 large 100
0.457 | 0.831 | 0.50:0.95 all 1
0.878 | 0.994 0.50 all 10
Checkout 0.878 | 0.960 0.75 all 100
0.000 | 0.000 | 0.50:0.95 small 100
0.040 | 0.040 | 0.50:0.95 | medium 100
0.878 | 0.831 | 0.50:0.95 large 100

Table 3. Average Precision and Recall of Our Result.

Figure 10. Failure Case.Two glues on the left is classified as one.

63.32%, which is higher than the 56.68% baseline accuracy.
The main thing we learned from the project is how to use
data augmentation technique to overcome domain shifting
problem. In the future, we would like to further investigate
other data augmentation techniques to improve the realism
of the synthesized images and research on transfer learning
which allows the model to learn new class easily.
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