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Figure 1: Our synthesized dance video conditioned on the song “I Wish". We show 5 frames from a 5-second synthesized video.
The top row shows the skeletons, and the bottom row shows the corresponding synthesized video frames. More results are
shown in the supplementary video at https://youtu.be/UNHv7uOUExU.

ABSTRACT
We present a self-supervised approach with pose perceptual loss
for automatic dance video generation. Our method can produce a
realistic dance video that conforms to the beats and rhymes of given
music. To achieve this, we firstly generate a human skeleton se-
quence from music and then apply the learned pose-to-appearance
mapping to generate the final video. In the stage of generating
skeleton sequences, we utilize two discriminators to capture differ-
ent aspects of the sequence and propose a novel pose perceptual
loss to produce natural dances. Besides, we also provide a new
cross-modal evaluation to evaluate the dance quality, which is
able to estimate the similarity between two modalities (music and
dance). Finally, experimental qualitative and quantitative results
demonstrate that our dance video synthesis approach produces
realistic and diverse results. Source code and data are available at
https://github.com/xrenaa/Music-Dance-Video-Synthesis.

CCS CONCEPTS
• Applied computing → Media arts; • Human-centered com-
puting→HCI theory, concepts and models; •Computingmethod-
ologies → Neural networks.
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1 INTRODUCTION
Dance videos have become unprecedentedly popular all over the
world. Nearly all the top 10 most-viewed YouTube videos are mu-
sic videos with dancing [14]. While generating a realistic dance
sequence for a song is a challenging task even for professional
choreographers, we believe an intelligent system can automatically
generate personalized and creative dance videos. In this paper, we
study automatic dance video generation conditioned on any music.
We aim to synthesize a coherent and photo-realistic dance video
that conforms to the given music. With such dance video gener-
ation technology, a user can share a personalized dance video on
social media, such as TikTok. In Figure 1, we show sampled images
of our synthesized dance video given the music “I Wish" by Cosmic
Girls.

The dance video synthesis task is challenging for various techni-
cal reasons. First, the generated dance should be synchronized with
the music and reflect the music’s content, while the relationship
between dance and music is hard to capture. Second, it is technically
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challenging to model the dance movement, which has a long-term
spatio-temporal structure. Third, a learning-based method is ex-
pected to require a large amount of training data of paired music
and dance.

Researchers have proposed various ideas to tackle these chal-
lenges. A line of literature [2, 22, 38] treated dance synthesis as a
retrieval problem, which limits the creativity of generated dance.
To model the space of human body dance, Tang et al. [41] and Lee et
al. [26] used 𝐿1 or 𝐿2 distance, which is demonstrated to disregard
some specific motion characteristics by Martinez et al. [32]. For
building a dance dataset, one option is to obtain a 3D dataset by
using an expensive motion capture equipment with professional
artists [41]. While this approach costs time and money, an alterna-
tive is to apply OpenPose [5, 6, 47] to get dance skeleton sequences
from online videos and correct them frame by frame [25]. How-
ever, this method is still labor-intensive and thus not suitable for
extensive applications.

To overcome such obstacles, we introduce a self-supervised sys-
tem trained on online videos as input without additional human
assistance. We propose a Global Content Discriminator with an
attention mechanism to deal with cross-modal mapping and main-
tain global harmony between music and dance. A Local Temporal
Discriminator is utilized to model the dance movement and focus
on local coherence. Moreover, we introduce a novel pose perceptual
loss that enables our model to train on noisy pose data generated
by OpenPose.

To facilitate this dance synthesis task, we collect a dataset con-
taining 100 online videos of representative categories: 40 in K-pop,
20 in Ballet, and 40 in Popping. To analyze the performance of our
framework, we use various metrics to analyze realism, diversity,
style consistency. Besides, we proposed a cross-modal evaluation
to analyze the music-matching ability of our model. Both qualita-
tive and quantitative results demonstrate that our framework can
choreograph at a similar level with real artists.

The contributions of our work are summarized as follows.

• With the proposed pose perceptual loss, our model can be trained
on a noisy dataset (without human labels) to synthesize realistic
and diverse dance videos that conform to any given music.

• With the Local Temporal Discriminator and the Global Content
Discriminator, our framework can generate a coherent dance skele-
ton sequence that matches the music rhythm and style.

• For our task, we build a dataset containing paired music and skele-
ton sequences, which will be made public for research. To evaluate
our model, we propose a novel cross-modal evaluation that mea-
sures the similarity between music and a skeleton sequence.

2 RELATEDWORK
Generative Adversarial Networks. A generative adversarial net-
work (GAN) [16] is a popular approach for image generation. The
images generated by GAN are usually sharper and with more de-
tails compared to those with 𝐿1 and 𝐿2 distance. Recently, GAN is
also extended to video generation tasks [29, 33, 42, 43]. The GAN
model in [43] replaced the standard 2D convolutional layer with a
3D convolutional layer to capture the temporal feature, although
this method can only capture characteristics in a fixed period. This

limitation is overcome by TGAN [36], but with the cost of con-
straints imposed in the latent space. MoCoGAN [42] could generate
videos that combine the advantages of RNN-based GAN models
and sliding window techniques so that the motion and content are
disentangled in the latent space.

Another advantage of GAN based models is that it is widely
applicable to many tasks, including the cross-modal audio-to-video
problem. Chen et al. [9] proposed a GAN-based encoder-decoder
architecture using CNNs to convert between audio spectrograms
and frames. Furthermore, Vougioukas et al. [44] adapted temporal
GAN to automatically synthesize a talking character conditioned
on speech signals.

Dance Motion Synthesis. A line of work focuses on the map-
ping between acoustic and motion features. On the base of labeling
music with joint positions and angles, Shiratori et al. [22, 38] in-
corporated gravity and beats as additional features for predicting
dance motion. Alemi et al. [2] combined the acoustic feature with
the motion features of previous frames. However, these approaches
are entirely dependent on the prepared database and may only
create rigid motion when it comes to music with similar acoustic
features.

Recently, Yaota et al. [48] accomplished dance synthesis using
standard deep learning models. Tang et al. [41] proposed a model
based on LSTM-autoencoder architecture to generate dance pose
sequences. Ahn et al. [1] firstly determined the genre of the music
by a trained classifier and chose a pose generator for the determined
genre. However, their results are not on parwith those by real artists.
Lee et al. [25] proposed a complex synthesis-by-analysis learning
framework. Their model is trained on a manually pre-processed
dataset, which is not easy for the large-scale extension to different
dance styles.

3 OVERVIEW
To generate a dance video from music, we split our system into
two stages. In the first stage, we propose an end-to-end model
that directly generates a dance skeleton sequence according to the
audio input. In the second stage, we translate the dance skeleton
sequences to photo-realistic videos by applying the pix2pixHD
GAN [45].

The pipeline of the first stage is shown in Figure 2. Let 𝑉 be
the number of joints of the human skeleton where each joint is
represented by a 2D coordinate. We formulate a dance skeleton
sequence 𝑋 ∈ 𝑅𝑇×2𝑉 as a sequence of human skeletons across
𝑇 consecutive frames, where each skeleton frame 𝑋𝑡 ∈ 𝑅2𝑉 is a
vector containing all joint locations. Our goal is to learn a function
𝐺 : 𝑅𝑇𝑆 → 𝑅𝑇×2𝑉 that maps audio signals with sample rate 𝑆 per
frame to a joint location vector sequence.

Dance Generator. The dance generator is composed of a music
encoding part and a pose generator. The input audio signals are
divided into pieces of 0.1-second music. These pieces are encoded
using 1D convolution and then fed into a bi-directional 2-layer
GRU in chronological order, resulting in output hidden states 𝑂 =

{𝐻1, 𝐻2, · · · , 𝐻𝑇 }. These hidden states are fed in the pose generator,
a multi-layer perceptron, to produce a skeleton sequence of 𝑋 .



Audio
Encoder

Audio
Encoder

Audio
Encoder

Audio
Encoder

GRU

GRU

GRU

GRU

Hidden	States

𝐻"

𝐻#

𝐻$

𝐻%
Pose

Generator

Global	Content	Discriminator

Local	Temporal	Discriminator
Music

Figure 2: Our framework for music-oriented dance skeleton sequence synthesis. The input music signals are first divided into
pieces of 0.1-second music. The generator in our model contains an audio encoder, a bidirectional GRU, and a pose generator.
The output skeleton sequence of the generator is fed into the Global Content Discriminator to evaluate the consistency with
the input music. The generated skeleton sequence is also divided into overlapping sub-sequences, which are fed into the Local
Temporal Discriminator for local temporal consistency.

Local Temporal Discriminator. The output skeleton sequence
𝑋 is divided into𝐾 overlapping sequences ∈ 𝑅𝑡×2𝑉 . Then these sub-
sequences are fed into the Local Temporal Discriminator, which is
a two-branch convolutional network. In the end, a small classifier
outputs 𝐾 scores that determine the realism of these skeleton sub-
sequences.

Global Content Discriminator. The input to the Global Con-
tent Discriminator includes the music 𝑀 ∈ 𝑅𝑇𝑆 and the dance
skeleton sequence 𝑋 . For the pose part, the skeleton sequence 𝑋
is encoded using pose discriminator as 𝐹𝑃 ∈ 𝑅256. For the music
part, similar to the sub-network of the generator, music is encoded
using 1D convolution and then fed into a bi-directional 2-layer
GRU, resulting in an output 𝑂𝑀 = {𝐻𝑀1 , 𝐻

𝑀
2 , ..., 𝐻

𝑀
𝑇
} and 𝑂𝑀 is

transmitted into the self-attention component [30] to get a com-
prehensive music feature expression 𝐹𝑀 ∈ 𝑅256. In the end, we
concatenate 𝐹𝑀 and 𝐹𝑃 along channels and use a small classifier,
composed of a 1D convolutional layer and a fully-connected (FC)
layer, to determine if the skeleton sequence matches the music.

Pose Perceptual Loss. Recently, graph convolutional networks
(GCN) [28, 39, 49] have been extended to model skeletons since the
human skeleton has a graph-based representation. Thus, the fea-
tures extracted by GCN contains high-level spatial structural infor-
mation about the human skeleton structure. Matching intermediate
features in a pre-trained GCN network gives a better constraint
on both detail and layout of a pose than the traditional metrics
such as 𝐿1 or 𝐿2 distance. Figure 3 shows the pipeline of our pose

perceptual loss. With the pose perceptual loss, our output skeleton
sequence does not need post-processing for temporal smoothing.

4 POSE PERCEPTUAL LOSS
Perceptual loss or feature matching loss [3, 10, 15, 21, 34, 45, 46]
has been used to measure the similarity between two images in
image processing and synthesis. For the tasks that generate human
skeleton sequences, prior work [4, 26, 41] only uses 𝐿1 or 𝐿2 dis-
tance for measuring pose similarity. However, 𝐿1 or 𝐿2 loss is not
invariant in translation and scale. Moreover, the poses generated
by OpenPose [5] are noisy, as shown in Figure 5. Correcting inac-
curate human poses on a large number of videos is labor-intensive:
a two-minute video with 10 FPS will have 1200 poses to verify and
correct.

To tackle these difficulties, we propose a novel pose perceptual
loss. We propose to directly match features in a pose recognition
network that takes human skeleton sequences as input. We use
ST-GCN [49] that is a Graph Convolutional Network (GCN) for a
pose recognition to extract deep features. ST-GCN utilizes a spatial-
temporal graph to form the hierarchical representation of skeleton
sequences to learn both spatial and temporal patterns from data.
As shown in Figure 4, our generator can stably generate poses with
the pose perceptual loss.

Given a pre-trained GCN networkΦ, we define a collection of lay-
ers Φ as {Φ𝑙 }. For a training pair (𝑃,𝑀) where 𝑃 is the ground-truth
skeleton sequence (from Openpose) and 𝑀 is the corresponding
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Figure 3: The overview of the pose perceptual loss based on ST-GCN.𝐺 is our generator in the first stage. 𝑦 is the ground-truth
skeleton sequence, and 𝑦 is the generated skeleton sequence.

piece of music, the pose perceptual loss is

L𝑃 =
∑
𝑙

𝜆𝑙 ∥Φ𝑙 (𝑃) − Φ𝑙 (𝐺 (𝑀))∥1 . (1)

Here 𝐺 is the generator in the first stage of our framework. The
hyperparameters {𝜆𝑙 } balance the contribution of each layer 𝑙 to
the loss.

5 IMPLEMENTATION
5.1 Pose Discriminator
To evaluate if a dance skeleton sequence is realistic, we believe
the most indispensable factors include the intra-frame representa-
tion for joint co-occurrences and the inter-frame representation
for skeleton temporal evolution. To extract features of a pose se-
quence, we explore multi-stream CNN-based methods and adopt
the Hierarchical Co-occurrence Network framework [27] to enable
discriminators to differentiate real and fake pose sequences.

Two-stream CNN. The input of the pose discriminator is a
skeleton sequence 𝑋 . The temporal difference is interpolated to
be of the same shape of 𝑋 . Then the skeleton sequence and the
temporal difference are fed into the network directly as two input
streams. Their feature maps are concatenated along channels, and
then we use convolutional and fully-connected layers to extract
features.

5.2 Local Temporal Discriminator
One of the objectives of the pose generator is to achieve temporal
coherence of the generated skeleton sequence. For example, when
a man moves his left foot, his right foot should keep still for multi-
ples frames. Similar to PatchGAN [20, 46, 51], we propose a Local
Temporal Discriminator to achieve coherence between consecu-
tive frames. Besides, the Local Temporal Discriminator contains a
trimmed pose discriminator and a small classifier composed of two
fully-connected layers.

5.3 Global Content Discriminator
Dance is closely related to music, and the harmony between music
and dance is a crucial criterion to evaluate a dance sequence. In-
spired by [44], we proposed the Global Content Discriminator to
deal with the relationship between music and dance.

Without L𝑃 With L𝑃 Without L𝑃 With L𝑃

Figure 4: In each pair of images, the first image is a skeleton
generated by the model without pose perceptual loss, and
the second image is a skeleton generated by the model with
pose perceptual loss according to the same piece of music.

As we mentioned previously, music is encoded as a sequence
𝑂𝑀 = {𝐻𝑀1 , 𝐻

𝑀
2 , ..., 𝐻

𝑀
𝑇
}. Though GRU can capture long term de-

pendencies, it is still challenging for GRU to encode the entire music
information. In our experiment, only using 𝐻𝑀

𝑇
to represent music

feature 𝐹𝑀 will lead to a crash of the beginning part of the skeleton
sequence. Therefore, we use the self-attention mechanism [30] to
assign a weight for each hidden state and gain a comprehensive
embedding. In the next part, we briefly describe the self-attention
mechanism used in our framework.

Self-attention mechanism. Given 𝑂𝑀 ∈ 𝑅𝑇×𝑘 , we can com-
pute its weight at each time step by

𝑟 =𝑊2 tanh(𝑊1𝑂
𝑀⊤), (2)

𝑎𝑖 = − log

(
exp (𝑟𝑖 )∑
𝑗 exp

(
𝑟 𝑗

) ) , (3)

where 𝑟𝑖 is 𝑖-th element of the 𝑟 ,𝑊1 ∈ 𝑅𝑘×𝑙 , and𝑊2 ∈ 𝑅𝑙×1. 𝑎𝑖 is
the assigned weight for 𝑖-th time step in the sequence of hidden
states. Thus, the music feature 𝐹𝑀 can be computed by multiplying
the scores 𝐴 = [𝑎1, 𝑎2, ..., 𝑎𝑛] and 𝑂𝑀 , written as 𝐹𝑀 = 𝐴𝑂𝑀 .

5.4 Other Loss Function
GAN loss L𝑎𝑑𝑣 . The Local Temporal Discriminator (𝐷𝑙𝑜𝑐𝑎𝑙 ) is
trained on overlapping skeleton sequences that are sampled using
𝑆 (·) from a whole skeleton sequence. The Global Content Discrim-
inator (𝐷𝑔𝑙𝑜𝑏𝑎𝑙 ) distinguishes the harmony between the skeleton
sequence and the input music𝑚. Besides, we have 𝑥 = 𝐺 (𝑚) and



Figure 5: Noisy pose data caused by occlusion and overlap-
ping. Correcting such noisy frames brings tremendous dif-
ficulties to enlarge the dance dataset, especially in terms of
time and labor.

the ground truth skeleton sequence 𝑝 . We also apply a gradient
penalty [17] term in 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 . Therefore, the adversarial loss is de-
fined as

L𝑎𝑑𝑣 =E𝑝 [log𝐷𝑙𝑜𝑐𝑎𝑙 (𝑆 (𝑝))]+
E𝑥,𝑚 [log[1 − 𝐷𝑙𝑜𝑐𝑎𝑙 (𝑆 (𝑥))]]+
E𝑝,𝑚 [log𝐷𝑔𝑙𝑜𝑏𝑎𝑙 (𝑝,𝑚)]+
E𝑥,𝑚 [log[1 − 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 (𝑥,𝑚)]]+
𝑤𝐺𝑃E𝑥,̂𝑚 [(∥ ▽𝑥,̂𝑚 𝐷 (𝑥,̂𝑚)∥2 − 1)2],

(4)

where𝑤𝐺𝑃 is the weight for the gradient penalty term.
𝐿1 distance L𝐿1 . Given a ground truth dance skeleton sequence

𝑌 with the same shape of 𝑋 ∈ 𝑅𝑇×2𝑉 , the reconstruction loss at the
joint level is

L𝐿1 =
∑

𝑗 ∈[0,2𝑉 ]
∥𝑌𝑗 − 𝑋 𝑗 ∥1 . (5)

Feature matching loss L𝐹𝑀 . We adopt the feature matching
loss from [45] to stabilize the training of Global Content Discrimi-
nator 𝐷 :

L𝐹𝑀 = E𝑝,𝑚

𝑀∑
𝑖=1

∥𝐷𝑖 (𝑝,𝑚) − 𝐷𝑖 (𝐺 (𝑚),𝑚)∥1, (6)

where𝑀 is the number of layers in 𝐷 and 𝐷𝑖 denotes the 𝑖𝑡ℎ layer
of 𝐷 . In addition, we omit the normalization term of the original
L𝐹𝑀 to fit our architecture.

Full Objective. Our full objective is

argmin
𝐺

max
𝐷

L𝑎𝑑𝑣 +𝑤𝑃L𝑃 +𝑤𝐹𝑀L𝐹𝑀 +𝑤𝐿1L𝐿1 , (7)

where𝑤𝑃 ,𝑤𝐹𝑀 , and𝑤𝐿1 represent the weights for each loss term.

5.5 Pose to Video
Recently, researchers have been studyingmotion transfer, especially
for transferring dance motion between two videos [8, 31, 46, 50].
Among these methods, we adopt pix2pixHD GAN proposed by
Wang et al. [45] rather than a state-of-the-art method because of its
simplicity and effectiveness. Given a skeleton sequence and a video
of a target person, the framework could transfer the movement of
the skeleton sequence to the target person. Although pix2pixHD
GAN [45] is an image-based method, our synthesized dance videos
achieve temporal coherence for the effectiveness of our local tem-
poral discriminator. As shown in Figure 9, the quality of our video
is better than Lee et al. [25], which use vid2vid GAN [46] to trans-
fer skeleton sequences to videos. Additional result is shown in
Figure 10.

Figure 6: Video frames sampled from online dance videos
of different categories. From top to down: K-pop, Ballet, and
Popping. In total, we collect 100 online videos in our dataset.

6 EXPERIMENTS
6.1 Experimental Setup
We will evaluate the following baselines and our model.

• 𝑳1. In this 𝐿1 baseline, we only use 𝐿1 loss to train the gen-
erator.

• Global D. Based on the 𝑳1 baseline, we add a Global Content
Discriminator.

• Local D. Based on the Global D baseline, we add a Local
Temporal Discriminator.

• Our model. Based on the Local D baseline, we add pose
perceptual loss. These conditions are used in Table 2.

6.2 Dataset
To build our dataset, we apply OpenPose [5, 6, 47] to collected
online videos of three representative categories of dance, as shown
in Figure 6 to obtain the skeleton sequences. In total, We collected
100 videos about 3 minutes with a single dancer, and there are
40 k-pop videos, 20 ballet videos, and 40 popping videos. All the
extracted skeleton sequences are cut into clips of 5s. There are 1782
k-pop clips, 448 ballet clips, and 1518 popping clips in our dataset.
To avoid overlapping(from the same song) between the training set
and test set, we select the last 10% of each type of dance for testing,
and the remaining part is used for training.

6.3 Evaluation
6.3.1 User Study. To evaluate the quality of the generated skele-
ton sequences, we conduct a user study on Amazon Mechanical
Turk, following the protocol proposed by Lee et al. [25] to com-
pare the synthesis skeleton sequence and the ground-truth skeleton
sequence. To make this study fair, we verify the ground truth skele-
tons and interpolate the missing frames. The users are first asked
to answer a background question: “Do you learn to dance or have
knowledge about dance?” and they are labeled as “Expert” or “None-
Expert” based on their answer. Then, given a pair of dances with the
same music clip, each participant needs to answer two questions:
“Which dance is more realistic regardless of music?” and “Which
dance matches the music better?”. The results are summarized in
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Figure 7: Results of user study on comparisons between our synthesized skeleton sequence and the ground truth. For each
comparison, the participant should select the dances that “are more realistic regardless of music” and “better match the style
of music”. Each number denotes the percentage of preference. Our result is more preferred by Experts (familiar with dance).

FID Diversity Cross-modal

Real – 26.12 0.043

𝐿1 37.92 17.71 0.312
Global D 18.04 20.33 0.094
Local D 15.86 19.57 0.068
Our model 3.80 25.63 0.046

Table 1: Comparison between our model and baselines. For
FID and the cross-modal evaluation, lower is better. For Di-
versity, higher is better. The details of the baselines are
shown in Section 6.1.

Figure 7. Compared to the real dances, 51.2% of users prefer our ap-
proach in terms of motion realism and 40.83% in style consistency,
which shows that our model can choreograph at a similar level with
real artists. We randomly sample 20 pairs of five-second skeleton
sequences in the user study, and 30 participants are involved.

6.3.2 Cross-modal Evaluation. It is challenging to evaluate if a
dance sequence is suitable for a piece of music. To our best knowl-
edge, there is no existing method to evaluate the mapping between
music and dance. Therefore, we propose a cross-modal metric, as
shown in Figure 8, to estimate the similarity between music and
dance.

Given a training set𝑋 = {(𝑃,𝑀)} where 𝑃 is a dance skeleton se-
quence and𝑀 is the corresponding music. Then with a pre-trained
music feature extractor 𝐸𝑚 [11], we aggregate all the music embed-
ding 𝐹 = {𝐸𝑚 (𝑀), 𝑀 ∈ 𝑋 } in an embedding dictionary.

With our generator 𝐺 , we can get the synthesized skeleton se-
quence 𝑃𝑢 = 𝐺 (𝑀𝑢 ) for the givenmusic𝑀𝑢 . Also, we find a skeleton
sequence that represents the music 𝑀𝑢 to compare with 𝑃𝑢 . We
first obtain the music feature 𝐹𝑢 by 𝐹𝑢 = 𝐸𝑚 (𝑀𝑢 ), and then let 𝐹𝑣
be the nearest neighbor of 𝐹𝑢 in the embedding dictionary. In the
end, we use its corresponding skeleton sequence 𝑃𝑣 to represent
the music𝑀𝑢 . The second step is to measure the similarity between
two skeleton sequences with the novel metric learning objective

based on a triplet architecture and Maximum Mean Discrepancy,
proposed by Coskun et al. [13]. More implementation details about
this metric will be shown in the supplement.

6.3.3 Quantitative Evaluation. In addition to our cross-modal eval-
uation, which proves that our result matches the music, we also
adopt visual quality measurement following Fréchet Inception Dis-
tance (FID) [18] and diversity measurement from [25]. For FID,
we generate 70 dances based on randomly sampled music and use
our pre-trained ST-GCN to extract feature as there is no standard
feature extractor for skeleton sequences. For diversity, we also gen-
erated 70 dances based on randomly sampled music and compute
the FID between the 70 random combinations of them (To avoid
randomness, we make 200 random processes and take the average
score).

As shown in Table 2, all our proposed components steadily im-
prove the score of FID, Diversity, and Cross-modal metrics, and our
model is on par with the real artist. In particular, the pose perceptual
loss contributes most significantly.

6.3.4 Qualitative Evaluation. The qualitative comparison between
Lee et al. [25] and ours is illustrated in Figure 9. The dance videos
for different targets are illustrated in Figure 10. Our skeleton syn-
thesis results for different music styles are illustrated in Figure 11.
Furthermore, visual ablation study and more demonstration will be
presented in our supplementary video.

7 CONCLUSION
We have presented a two-stage framework to generate dance videos,
given almost any music. With our proposed pose perceptual loss,
our model can be trained on dance videos with noisy pose skele-
ton sequence (without human labels). Our approach can create
arbitrarily long, good-quality videos. We hope that this pipeline of
synthesizing skeleton sequence and dance video combining with
pose perceptual loss can support more future work, including more
creative video synthesis for artists.

Beyond sharing personalized dance music videos, another fun
application of our system is to create a choreography for popular
vocal groups whose members are all virtual animated characters. A
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Figure 9: Compared with Lee et al. [25], our generated dance skeleton sequence is more temporal-coherent, and thus the
synthesized dance video is more plausible. Though they use the state-of-the-art vid2vid GAN [46], the background in the
video is still not stable. The result of Lee et al. [25] is extracted from their demo video.

,

mobile application Sway [19] can create personalized dance videos
with a limited set of dance sequences and music, which can be
enriched with our system to generate unseen dance and music.
Moreover, our framework can be extended to work on a humanoid
robot so that the robot dances with music. Since our model is
learning-based, another possible application is to learn the dance
style of a specific superstar. With our system pre-trained on the
dance by Michael Jackson, one can generate novel dance videos in
his style for any music.



Figure 10: Synthesized dance video conditioned on the music “LIKEY" by TWICE. For each 5-second dance video, we show four
frames. The top row shows the skeleton sequence, and the bottom rows show the synthesized video frames conditioned on
different target videos.
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Figure 11: Qualitative results conditioned on different styles ofmusic clips. Every two rows show the skeleton sequences based
on a different style of music, from top to down: Popping, Ballet, and K-pop. In each row, we sample one pose every 0.3s.
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A AUDIO ENCODER
To extract the feature of the music, we adopt a deep audio en-
coder from [44], consisting of 1D convolutional layers and a fully-
connected (FC) layer.

stage specification output sizes

input data - 1 × 1600
1D conv1 kernal 80, stride 16 1 × 1600
1D conv2 kernal 4, stride 2 16 × 100
1D conv3 kernal 4, stride 2 32 × 50
1D conv4 kernal 10, stride 5 64 × 25
1D conv5 kernal 5, stride 1 128 × 5

fc a FC layer 256

Table 2: Details of our audio encoder. The audio encoder ex-
tracts 256 dimensional features from audio pieces contain-
ing 1600 samples. The output sizes of the 1D convolutional
layer is denoted as 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠 × 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑖𝑧𝑒.

B POSE GENERATOR
The pose generator [4] is responsible for generating the skeleton
sequence in the first step of our system. Our pose generator takes
hidden states as input and outputs the skeleton sequence. As shown
in Figure 14, the pose generator is a multi-layer perceptron.

C POSE DISCRIMINATOR
Given a skeleton sequence 𝑋 ∈ 𝑅𝑇×2𝑉 , we firstly reshape it as
𝑇 × 𝑉 × 2. For the point-level feature learning stage, the kernel
sizes along the joint dimension are kept 1, so they are forced to
learn point-level representation from 2D coordinates for each joint
independently. After that, we transpose the feature maps with
parameter (0, 2, 1) so that the joint dimension is moved to channels
of the tensor. Then in the next stage, all subsequent convolution
layers extract global co-occurrence features from all joints of a
person [27]. In the end, we flatten the feature map and gain a
feature embedding by using a fully-connected layer.

D GLOBAL CONTENT DISCRIMINATOR
The Global Content Discriminator is shown in Figure 13.

E POSE METRIC NETWORK
For our novel cross-modalmetric, we adopt the posemetric network,
proposed by [12]. We firstly introduce the formulation of MMD
measures used in this pose metric network. Given two different
distributions 𝑝 and 𝑞,

MMD[𝑘,𝑋,𝑌 ] = 1
𝑚2

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑘 (𝑥𝑖 , 𝑥 𝑗 )−

2
𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑘 (𝑥𝑖 , 𝑦 𝑗 )+

1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑘 (𝑦𝑖 , 𝑦 𝑗 )

(8)
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Figure 12: Overview of pose discriminator, which is a two-
branch CNN. For the blocks of the convolution layer, the
last dimension represents the number of output channels.
A trailing “/2" means an appended MaxPooling layer with
stride 2 after convolution.

where𝑋 := 𝑥1, 𝑥2, ..., 𝑥𝑚 is the sample set from 𝑝 and𝑌 := 𝑦1, 𝑦2, ..., 𝑦𝑛
is the sample set from 𝑞. Besides,

𝑘 (𝑥,𝑦) =
𝐾∑
𝑞=1

𝑘𝜎𝑞 (𝑥,𝑦) (9)

where 𝑘𝜎𝑞 is a Gaussian kernal with bandwidth parameter 𝜎𝑞 , and
𝐾 is number of kernels.

Furthermore, given two dance sequence 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} and
𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛} (where 𝑥𝑡 and 𝑦𝑡 represent the pose at time
t), the similarity metric can be expressed directly as the squared
Euclidean distance in the embedding space, which can be written
mathematically as

𝑑 (𝑓 (𝑋 ), 𝑓 (𝑌 )) = ∥ 𝑓 (𝑋 ) − 𝑓 (𝑌 )∥2 (10)

where 𝑓 (·) is the learned embedding function that maps a motion
sequence to a point in a Euclidean space and 𝑓 is learned by means
of a deep learning model trained with a MMD-NCA loss:

L𝑚𝑒𝑡𝑟𝑖𝑐 =
exp(−MMD[𝑘, 𝑓 (𝑋 ), 𝑓 (𝑋+)])∑𝑀
𝑗=1 exp(−MMD[𝑘, 𝑓 (𝑋 ), 𝑓 (𝑋−

𝑐 𝑗 )]
(11)
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Figure 14: Overview of our pose generator. ⊕ stands
for element-wise addition. The output of the last fully-
connected layer is ∈ 𝑅2𝑉 , where 𝑉 = 18.

where 𝑋 and 𝑋+ represent skeleton sequence from the same cate-
gory, while 𝑋𝑐 𝑗 represents samples from category 𝑐 𝑗 ∈ 𝐶 (𝐶 is a set
of𝑀 different categories).

F POSE NORMALIZATION
For our dataset, the skeleton sequences are scaled to a similar
height: we first define one video’s skeleton sequence as the stan-
dard sequence and used a weighted ratio to scale sequences of other
videos to match the standard skeleton sequences. All the skeleton
sequences are normalized to [−1, 1]. And for the step of pose to
video, we adjust the generated skeleton sequences to fit the subject
of the target video.

G OTHER DATASET
Let’s Dance Dataset. Castro et al. [7] released a dataset containing
16 classes of dance. The dataset provides information about human

skeleton sequences for pose recognition. Though there are existing
enormous motion datasets [24, 37, 40] with skeleton sequences,
we choose Let’s Dance Dataset to pre-train our ST-GCN for pose
perceptual loss as dance is different with normal human motion.

FMA. For our cross-modal evaluation, the extraction of music
features is needed. To achieve this goal, we adopt CRNN [11] and
choose the Free Music Archive (FMA) dataset to train CRNN. In
FMA, genre information and the music content are provided for
genre classification.

H IMPLEMENTATION DETAILS
All the models are trained on an Nvidia GeForce GTX 1080 Ti GPU.
For the first stage in our framework, the model is implemented
in PyTorch [35] and takes approximately one day to train for 400
epochs. For the hyperparameters, we set 𝑉 = 18, 𝑇 = 50, 𝑡 = 5,
𝐾 = 16, 𝑆 = 16000. For the self attention mechanism, we set 𝑘 =

256, 𝑙 = 40. For the loss function, the hyperparameters {𝜆𝑙 } are set to
be [20, 5, 1, 1, 1, 1, 1, 1, 1] and𝑤𝐺𝑃 = 1,𝑤𝑃 = 1,𝑤𝐹𝑀 = 1,𝑤𝐿1 = 200.
Though theweight of 𝐿1 distance loss is relatively large, the absolute
value of the 𝐿1 loss is quite small. We used Adam [23] for all the
networkswith a learning rate of 0.003 for the generator and 0.003 for
the Local Temporal Discriminator and 0.005 for the Global Content
Discriminator.

For the second stage that transfers pose to video, the model
takes approximately three days to train, and the hyperparameters
of it adopt the same as [8]. For the pre-train process of ST-GCN
and CRNN, we also used Adam [23] for them with a learning rate
of 0.002. ST-GCN achieves 46% precision on Let’s Dance Dataset.
CRNN is pretrained on the FMA, and the top-2 accuracy is 67.82%.
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