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Figure 1. Using a single image and a camera trajectory as inputs, our method synthesizes perceptual consistent novel views, which form a
long-term video. The top two rows are test images from the Matterport dataset [6], and the bottom two rows are from the RealEstate10K
dataset [72]. Our model is able to synthesize with large camera changes and even walk outside a room to look into another room.

Abstract

Novel view synthesis from a single image has recently
attracted a lot of attention, and it has been primarily ad-
vanced by 3D deep learning and rendering techniques.
However, most work is still limited by synthesizing new
views within relatively small camera motions. In this pa-
per, we propose a novel approach to synthesize a consistent
long-term video given a single scene image and a trajec-
tory of large camera motions. Our approach utilizes an au-
toregressive Transformer to perform sequential modeling of
multiple frames, which reasons the relations between mul-
tiple frames and the corresponding cameras to predict the
next frame. To facilitate learning and ensure consistency
among generated frames, we introduce a locality constraint

based on the input cameras to guide self-attention among a
large number of patches across space and time. Our method
outperforms state-of-the-art view synthesis approaches by a
large margin, especially when synthesizing long-term future
in indoor 3D scenes.

1. Introduction
Single-image view synthesis has attracted a lot of atten-

tion in computer vision and computer graphics. It brings a
photo to life by extrapolating beyond the input pixels and
generating new pixels following the geometric structure of
the scene. At the same time, the generated pixels need to be
semantically coherent with the existing pixels. Current view
synthesis methods which learn 3D geometric representation
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have shown encouraging results in generating high-quality
novel views [37, 55, 68]. However, these approaches can
only generate views within a limited range of camera mo-
tion. For example, it will be very challenging for current ap-
proaches to synthesize what is outside the door of the room
shown in the first row of Figure 1.

When synthesizing images with large camera view
changes, we would also expect the generated images to be
consistent. That is, when we are synthesizing with a path
walking towards the door in a room, we hope that the sur-
roundings of the path should not change all the time and
reveal a single underlying world. To this end, we propose to
solve the problem extended based on view synthesis: Given
a single image of the 3D scene and a long-term camera tra-
jectory as inputs, synthesize a consistent video as the out-
put. For example, given a single input image of a room
(first row of Figure 1), we synthesize the video on walking
towards the door, going through the door, and navigating
into a hallway with a painting on the wall. Solving such
a task not only has wide applications in content generation
and editing but also helps build a differentiable simulator
for model-based planning and control in robotics.

To solve this problem, we seek help from autoregressive
models [8, 39, 40, 59], which have shown tremendous suc-
cess in extrapolating the contents beyond the input image.
For example, Rombach et al. [44] proposes to use an au-
toregressive Transformer to implicitly perform large geo-
metric transformation for view synthesis. To handle the un-
certainty with a large transformation, the model is trained
under a probabilistic framework which allows for sampling
different novel views with the same camera. While gener-
ating realistic novel views even given a large transforma-
tion, it also leads to inconsistent and diverse outputs along
a given trajectory due to the probabilistic sampling.

In this paper, to synthesize consistent long-term videos,
we propose to leverage the autoregressive Transformer for
sequential modeling in time with locality constraints. In-
stead of learning the autoregressive model between only
two views of the scene [44], our work leverages the con-
tinuity in videos and perform sequential modeling with
multiple video frames. Given a sequence of input im-
ages {x1, x2, ..., xt−1} and the previous camera trajectory
{C2, C3, ..., Ct−1} and the camera for the future frame Ct,
we provide a probabilistic framework to predict the future
frame via sampling from p(xt|x1, C2, x2, C3, ..., xt−1, Ct).
By conditioning multiple frames during sampling, it en-
sures the consistency between generated views and histori-
cal views. When inference with our Transformer model, we
can start with a single input image and gradually increase
the inputs using the predicted frames and previous frames.

However, it is very challenging to learn such a sequen-
tial model with the autoregressive Transformer, which uses
self-attention to model a large number of relations between

every two patches across space and time in the input video.
To facilitate training, our key insight is that not every re-
lational pair is equally important, and we can incorporate
a locality constraint to guide the model to concentrate on
the critical dependencies. Such locality constraints are in-
troduced by the cameras. Intuitively, given a relative cam-
era between two frames, we can roughly locate where the
overlapping pixels are and where are the new pixels to syn-
thesize. To incorporate this knowledge, we compute a bias
using an MLP, which takes the relative camera as inputs,
namely Camera-Aware Bias. We add this bias to the affin-
ity matrix while performing the self-attention operation. In
this way, each patch will have a stronger bias on depend-
ing on or attending to relevant patches connected by the
camera. Empirically, we find the Camera-Aware Bias not
only makes the optimization much easier but also plays a
vital role in enforcing the consistency between frames dur-
ing generation.

We perform our experiments on multiple datasets, in-
cluding the RealEstate10K [72] and Matterport3D [6],
which mainly focus on 3D indoor scenes. Our model is able
to synthesize new views with large camera motion, and gen-
erate a long-term video given a single image input as visual-
ized in Figure 1. Our method not only outperforms state-of-
the-art approaches on standard view synthesis metrics, but
also achieves a significantly better gain when evaluating in
terms of long-range future frames. We highlight our main
contributions as follows:

• A novel Transformer model on synthesizing a consis-
tent long-term video given a single image and a trajec-
tory as inputs.

• A novel locality constraint using Camera-Aware Bias,
which facilitates optimization during learning and en-
forces the consistency between generated frames.

• State-of-the-art performance in view synthesis. Our
method outperforms baselines by a large margin on the
long-term frames.

2. Related Work
Novel View Synthesis. View synthesis has been a long-
studied problem in computer vision and graphics. When
synthesizing with multiple input views, 3D structural rep-
resentations are often leveraged such as classical multi-
view geometry [10, 11, 18, 25, 51, 73], deep voxel repre-
sentations [30, 52], and neural radiance fields [37, 64]. Re-
cently, researchers have also proposed to perform single-
image view synthesis to bring a static photo to life [20, 24,
27, 43, 53, 56, 68, 70]. For example, Wiles et al. [68] pro-
pose to perform view synthesis using 3D point clouds as
intermediate representations. While these approaches work
well with small camera changes, they cannot outpaint pix-
els far from the given view. To perform view synthesis with
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large camera changes, Rombach et al. [44] propose a Trans-
former based autoregressive model. While this approach
can synthesize diverse and realistic results, it cannot synthe-
size consistent views along a trajectory. To seek a balance,
Rockwell et al. [43] propose to leverage both 3D represen-
tation and the autoregressive models to achieve consistent
view synthesis in indoor scenes with large camera changes.
However, they are not able to generate a long-term future
outside the door of the given room like our approach does.
Video Synthesis. Learning to synthesize a video provides
an important manner to capture the dynamics of the world.
Researchers have studied synthesizing videos from a ran-
dom noise vector [48, 57, 61], predicting the future frames
based on one or multiple previous frames [12, 17, 22, 26,
35, 62, 63], and translating one video from one modality to
another [5, 42, 65, 66]. However, most video synthesis ap-
proaches do not consider the underline 3D geometry of the
scene when predicting the pixels. Our work is mostly re-
lated to [29], which proposes an approach to synthesize a
long-term video of outdoor nature environments given a sin-
gle image and a trajectory as inputs. Different from them,
we focus on 3D indoor scenes, which requires more struc-
tural reasoning when performing outpainting.
Image Extrapolation and Outpainting. Image outpaint-
ing [23, 67, 69] synthesizes pixels beyond current input im-
ages in 2D. Specifically, our work is related to the autore-
gressive models [36,41,49,58,59], which perform outpaint-
ing the next pixels in a sequential manner. However, learn-
ing to predict pixels one by one introduces a large complex-
ity in training and inference. Recently, Razavi et al. [40]
propose a novel representation with Vector Quantized Vari-
ational AutoEncoder (VQ-VAE), which performs autore-
gressive modeling in latent space instead of pixel space.
This largely reduces the complexity in sequential model-
ing, and it enables Generative Adversarial Networks [15,28]
for synthesizing high-resolution images with Transformers.
Our work is highly inspired by these works. Besides for-
warding only image tokens to Transformers, we also add
cameras as tokens in sequential modeling similar to [44].
Transformers. With the success of Transformer in
language-modeling [13,39,60], it is also recently introduced
into multiple recognition tasks in computer vision [1–3, 14,
16,31,32].Besides recognition tasks, it has also been widely
used together with autoregressive models for image and
video generations [15, 28, 38, 44]. However, it is still very
challenging to optimize the self-attention module in Trans-
former when modeling a long sequence of visual tokens. In
this paper, we propose to introduce a novel camera-aware
bias as a locality constraint for better sequential modeling.

3. Method
We propose a Transformer based autoregressive model

to encode and synthesize videos in a sequential manner.

We will first introduce our network architecture, and our
novel locality constraints using camera-aware bias for self-
attention as shown in Figure 2. Then we discuss the detailed
training procedure.

3.1. Autoregressive Scene Synthesis

Given a single input image x1 together with a sequence
of desirable camera transformations {C2, C3, ..., CT }, we
hope to synthesize a sequence of images {x2, ..., xT } with
unconstrained length, ensuring high-quality and perceptual
consistency without any 3D information.

Inspired by the success of sequential modeling in rein-
forcement learning [7], we propose to leverage a sequential
of previous frames and cameras to synthesize future novel
views. To achieve this, we need to accumulate the likeli-
hood of generating {xt}Tt=2 autoregressively as,

p({xt}Tt=2|x1, {Ct}Tt=2) =
∏
τ,i

p(xτ,i|xτ,<i, x<τ , {Ct}Tt=2)

=
∏
τ,i

p(xτ,i|xτ,<i, x<τ , {Ct}τt=2),

(1)
where τ ∈ [1, T ] indicates timestep, and i ∈ [1, HW ] indi-
cates the index inside a flattened image coordinate. Based
on this, we can sample xt from from the distribution:

xt ∼ p(xt|x1, C2, x2, C3, ..., xt−1, Ct). (2)

However, different from the simple case that models only
two adjacent views [29, 44], sequential modeling poses two
problems: (i) Self-attention alone does not ensure that the
relationship between every two patches across space and
time are properly modeled, given a large number of input
patch tokens increase the optimization difficulty; (ii) More
careful designs should be taken into account to ensure a
consistent long-term synthesis. For the first problem, we
propose a Camera-Aware Bias in self-attention as a local-
ity constraint (Sec. 3.3). For the second problem, we pro-
pose several key techniques for both training and inference
(Sec. 3.2 & Sec. 3.4).

3.2. Network Architecture

Overview. Direct learning the distribution in Eq. 1 in an
end-to-end manner is difficult because the model needs
to capture interactions inside the sequence and guarantee
high-quality generation at the same time. To tackle this
problem, we follow previous methods [15, 43] to adopt a
two-stage training. For the first stage, we pretrain a VQ-
GAN [15] mapping the images to “tokens”, consisting an
encoder E that encode images to discrete representations,
a decoder D that map the representations to high-fidelity
outputs, and a codebook B = {bi}|B|

i=1 of discrete represen-
tations bi ∈ Rdb . After processing the images into “tokens”,
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Figure 2. The illustration of (a) model overview, and (b) self-attention block with proposed Camera-Aware Bias. During training, images
{xl}Ll=1 and camera transformations {Cl}Ll=2 are first encoded to modality-specific tokens, and a decoupled positional embedding (P.E.)
is added. Tokens are then fed into an autoregressive Transformer that predicts images. During inference, given a single image, x1 and a
camera trajectory {Cl}Ll=2, novel views can be generated autoregressively by using the Transformer.

we use a GPT architecture [39] which modifies the Trans-
former [60] architecture with a causal self-attention mask to
enable autoregressive generation. We then introduce each
of the modules in our system in detail, as shown in Figure 2
(a).
Image Encoder E. For an input sequence of images
{xl}Ll=1, the l-th frame xl ∈ RH×W×3 can be converted
into the latent space by the pretrained VQ-GAN encoder
denoted as:

yl = E(xl), (3)

where yl ∈ Rhw×db is the latent variable with h×w tokens.
Note that h and w are smaller than H and W , making the
size tractable. Then yl can be quantized to get a sequence
of integers zIl ∈ Rhw which index the learned codebook B:

zIl,k = argmin
j

∥yl,k − bj∥2, (4)

where yl,k and zIl,k are the k-th tokens of yl and zIl .
Image Decoder D. Given the nearest indexes zIl , we can
decode it back to a high-fidelity image using the pretrained
VQ-GAN decoder. zIl is first embedded by the codebook B:

bl = B[zIl ], (5)

where bl ∈ R(hw)×dB . Then, bl can be decoded to recon-
struct the original image:

x̂ = D(bl), (6)

where x̂ ∈ RH×W×3. In this way, we can model the Eq. 1
with the discrete representation of images zI in the latent
space of the VQ-GAN. Moreover, the discrete representa-
tion is well-aligned with the “word” in NLP and thus suit-
able for efficiently training GPT-like architecture [15].
Camera Encoder EC . For the camera model, we follow
previous work [44, 68] to assume it as a pinhole one, such
that a desired geometric transformation between two im-
ages can be determined by the intrinsic camera matrix K, a
rotation matrix R, and a translation matrix t.
Canonical Modeling. In our method, to improve consis-
tency, we propose to use canonical modeling, such that the
first image is assumed as a canonical view. Thus, the input
sequence of camera transformation {Cl}Ll=2 is relative to
the canonical view, i.e., Cl = (K,R1→l, t1→l). We encode
Cl to latent representation Ce

l ∈ RM×de by:

Ce
l = EC(Cl), (7)

where the camera parameters inside Cl are flattened and
concatenated to shape M × 1 and EC is a linear layer map-
ping from R to Rde .
Transformer T . Given the encoded images embeddings
{zl}Ll=1 and camera embeddings {Ce

l }Ll=2, we use a trans-
former to model the conditional probability in Eq. 1 in the
latent space.
Decoupled Positional Embedding (P.E.). To deal with the
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spatial-temporal relationship, we propose a decoupled posi-
tional embedding. The tokens of the image are first calcu-
lated with the consideration of spatial information:

gIl = λ(zl) + P I , (8)

where λ(.) is a embedding function that maps zl into the
latent space ∈ Rhw×de of transformer and P I ∈ Rhw×de

is the learnable spatial positional embedding sharing across
the images. Similarly, the camera tokens are calculated as:

gCl = Ce
l + PC , (9)

where PC ∈ RM×de is the learnable camera positional em-
bedding sharing across the cameras. Then, the input tokens
to transformer are calculated as:

v = [gI1 , g
C
2 , ..., g

I
L−1, g

C
L , g

I
L] + PT , (10)

where v ∈ RN×de is the input tokens to transformer and
PT ∈ RN×de is the sinusoidal position embedding indicat-
ing order of tokens, modeling temporal relationship.

Now, the transformer T can be trained in an autoregres-
sive way, denoted as:

hn = T (v<n), (11)

where hn is the n step of output hidden states h ∈ RN×de .
In fact, we only select hidden states for image prediction
tokens and feed it to a linear layer to get the probability pI :

pIl,k = p(ẑIl,k|v<n) = softmax(Linear(hn)), (12)

where n is the index corresponds to the k-th token of the l-th
frame, i.e., n = (l− 1)(hw+M) + k. And the linear layer
maps Rde to R|B|. Finally, the transformer together with the
camera encoder are trained using cross-entropy loss, lead-
ing to the training objective:

L =

L∑
l=2

hw∑
k=1

CE(pIl,k, z
I
l,k), (13)

where CE(.) calculates the cross-entropy between the
probabilities and given labels, and zI is the corresponding
indexes in the codebook B.

3.3. Camera-Aware Bias in Transformer

Self-attention in Transformer captures global depen-
dency, which is a desirable property for novel view syn-
thesis. However, since only self-attention and MLP are ap-
plied in the Transformer, there is a lack of inductive bias
on 3D [21]. When facing thousands of tokens, includ-
ing information interaction between tokens across spatial
and time, it is hard to capture the significant dependencies
(e.g., whether two patches should be perceptually consis-
tent) without any constraints and inductive bias.

An intuitive way to introduce 3D-aware inductive bias
is to inject 3D convolutions. In ConvNets, 3D convolution
serves as a 3D-aware inductive bias with the constraint on
locality in both spatial and time [4]. Thus, it may be ben-
eficial to inject 3D convolutions into Transformers to in-
troduce 3D-aware inductive bias. However, the motion be-
tween two adjacent views can be so large that the overlap-
ping pixels in geometric transformation are not in the lo-
cal window, which cannot be modeled by one time of con-
volution operation. Our key insight to solve this problem
is that there is a clear relationship between frames in the
video, such that the correspondence between frame xi and
frame xj is determined by relative camera transformation
(K,Ri→j , ti→j). We can incorporate such spatial-temporal
dependency between pixels as a 3D-aware inductive bias in
Transformer. Inspired by the exploration on relative posi-
tion bias in computing affinity matrix in self-attention based
on image coordinate [31], we model the observed relation-
ship as a novel Camera-Aware Bias in self-attention block,
as shown in Figure 2 (b).

Given the query qi ∈ Rhw×de corresponding to i-th
frame, the key and value kj , vj ∈ Rhw×de corresponding
to j-th frame, we can first compute the similarity matrix
ai,j ∈ Rhw×hw with Camera-Aware Bias, denoted as:

ai,j = qikj + ϕ([K,Ri→j , ti→j ]), (14)

where ϕ : RM → Rhw×hw is an MLP. Then, the self-
attention between the hidden states corresponding to i-th
frame and j-th frame is calculated by:

Attention(qi, kj , vj) = softmax(
ai,j√
de

)vj , (15)

where softmax(.) here also takes similarity for cameras
and other frames into account. For the similarity between
frames and cameras, we do not apply any bias. Note that our
design is applicable to causal self-attention by setting j < i.
By adding the Camera-Aware Bias, each patch will have a
stronger bias depending on relevant patches connected by
the camera, which serves as a 3D-aware inductive bias.

3.4. Training and Inference Details

We then introduce several key techniques for training
and inference in our method.
Overlapping Iterative Modeling. In our task, we target
generating long-term 3D scene video with unconstrained
length T . However, it is never possible to set the length
of the training sequence L to infinity. Thus, we choose an
iterative modeling strategy. Given a single image x1, we
first generate x2, ...xL in an autoregressive manner. Then,
instead of only using xL, we aggregate information from
x2, ...xL to generate xL+1 and so on. This overlapping it-
erative modeling allows us to inference for unconstrained
length and maintains perceptual consistency. As we show
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in Sec. 4.4, this strategy is sufficient for a consistent long-
term 3D scene video even with a small L.
Error Accumulation. As pointed in [29, 45], a key chal-
lenge in generating long sequences is dealing with the ac-
cumulation of errors. Even a tiny perturbation in each it-
eration can eventually lead to predictions outside the distri-
bution and thus undesirable results. For an autoregressive
Transformer, though we still need teacher forcing in train-
ing, we can partially simulate the error accumulation pro-
cess during inference. We can first sample the predicted
novel views from the predicted logits with the image de-
coder D and then finetune the model with its own predicted
outputs, which improves the visual quality for long-term
synthesis as shown in Sec. 4.4.
Beam Search. During inference, we need to sample next
frame xt from Eq. 2. Considering the consistency, we need
to choose xt with the most likely sequences of tokens. How-
ever, decoding the most likely output sequence is exponen-
tial in the length of the output sequence, and thus it is in-
tractable [46]. We find that greedily take the most likely
next step as the sequence leads to unnatural artifacts. Thus,
we adopt a beam search strategy [47]. Starting with the k
most likely codes in the VQ codebook as the first step in the
sequence, we expand the top k possible next steps instead
of all possible in original algorithms for faster speed. Then
we keep the k most likely ones and repeat. In this way, we
find a more optimal sample than a greedy search.

4. Experiments
In this section, we provide an empirical evaluation of our

method. We demonstrate the power of our approach with an
autoregressive Transformer on the view synthesis task.

4.1. Experimental setup

Datasets. We follow the common protocol [24, 43,
68] to evaluate our method on Matterport3D [6] and
RealEstate10K [72]. Matterport3D consists of 3D mod-
els of scanned and reconstructed building-scale scenes, of
which 61 are for training and 18 are for testing. To gener-
ate long-term episodes, we use an embodied agent in Habi-
tat [50] from one point in the scene to another point. In
total, we render 6000 videos for training and 500 videos for
testing. RealEstate10K is a collection of videos of footages
of real estates (both indoor and outdoor). We follow [24] to
use 10, 000 videos for training and 5, 000 videos for testing.
Baselines. We compare our approach with three
state-of-the-art single-image novel view synthesis work:
SynSin [68], PixelSynth1 [43] and GeoGPT [44]. SynSin
and PixelSynth utilize point cloud as a geometric repre-
sentation. We also adopt an improved version of SynSin,

1The current implementation of PixelSynth only supports 10 discrete
directions. We compare against it in Sec. 4.3 following their setting.

Method Matterport3D RealEstate10K
LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑

SynSin [68] 3.53 13.92 2.55 14.77
SynSin-6x [43] 3.59 14.33 2.62 14.89
GeoGPT [44] 3.09 15.24 2.68 14.42
Ours 2.97 16.06 2.53 15.60

Table 1. Quantitative evaluation on short-term view synthesis.

named SynSin-6x, provided by [43], which trained on larger
view change. GeoGPT is a geometry-free method with
probabilistic modeling between two adjacent views.
Implementation Details. For preprocessing, we resize
all images into a resolution of H × W = 256 ×
256. For our experiments on both Matterport3D and
RealEstate10K, we adopted the VQ-GAN from [44] pre-
trained on RealEstate10K. The number of entries in the
codebook B is 16384. For the Transformer, we adopt a
GPT-like architecture [39] with a stack of 32 transformer
blocks containing casual self-attention modules. During
training, the training video clip consists L = 3 frames,
which will be discussed in Sec. 4.4. The encoded image
is of shape h × w = 16 × 16 and the camera embedding
is of length M = 30, which lead the total sequence length
N = 828. We train our Transformer using a batch size
of 16 for 200K iterations with an AdamW optimizer [33]
(with β1 = 0.9, β2 = 0.95). We set the initial learning rate
to 1.5×10−4 and apply a cosine-decay learning rate sched-
ule [34] towards zero. For beam search, we set k = 3. We
defer more details to the supplementary material.

4.2. Evaluation on Short-Term View Synthesis

We evaluate our method against the baselines on short-
term view synthesis in the considered range of previous
novel view synthesis methods. In this setting, we adopt
the standard metrics in view synthesis task: PSNR and
LPIPS [71]. PSNR measures pixel-wise differences be-
tween two images, and LPIPS measures the perceptual sim-
ilarity in deep feature space. As pointed by [43], PSNR
and LPIPS also measure consistency for a unimodal task,
such as the short-term view synthesis. For both datasets, we
randomly select test sequences with an input frame and 5
subsequent ground-truth frames.

Table 1 shows the quantitative results for our method.
Without an intermediate geometry, our method can still out-
perform the methods with explicit geometric modeling in
terms of short-term view synthesis. Moreover, our method
also outperforms the geometry-free baseline, GeoGPT, by a
large margin since this method does not ensure consistency.

4.3. Evaluation on Long-Term View Synthes

We then evaluate our method on the long-term view syn-
thesis task. Prior work [23, 43] points out that PSNR and
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Method Matterport3D RealEstate10K
A/B vs. Ours FID↓ A/B vs. Ours FID↓

SynSin [68] 82.0% 152.51 92.5 % 75.47
SynSin-6x [43] 87.0% 153.96 88.5 % 48.71
GeoGPT [44] 81.5 % 99.06 68.5 % 53.82
Ours – 57.22 – 32.88

PixelSynth [43] 69.0% 146.54 63.0% 98.87
Ours* – 75.96 – 82.51

Table 2. Image quality and scene consistency evaluation on long-
term view synthesis. For the A/B test, each cell lists the fraction
of pairwise comparisons in which scenes synthesized by our ap-
proach were rated more consistent than scenes synthesized by the
corresponding baseline. Ours* indicates our results following the
setting of PixelSynth.

Method Matterport3D RealEstate10K
LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑

SynSin [68] 3.85 13.51 3.41 12.18
SynSin - 6x [43] 3.85 14.03 3.42 12.28
GeoGPT [44] 3.71 11.43 3.44 10.61
Ours 3.54 12.89 3.20 12.36

Table 3. Quantitative evaluation on long-term view synthesis.
Though PSNR and LPIPS are poor metrics for extrapolation
tasks [23, 43], we report them for reference.
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Figure 3. Qualitative comparison between our method and Pix-
elSynth [43]. Though PixelSynth conducts outpainting explicitly,
it is not capable of synthesizing a long-range view. Sequential
modeling instead creates realistic and consistent views since it fa-
cilitates outpainting conditioned on pixels from previous frames.

LPIPS are poor metrics for scene extrapolation tasks cause
there are multiple possibilities for the output. Thus, for
image quality, we follow [29] to use FID [19], which is
a distribution-level similarity measurement between gen-
erated images and real images. For consistency, we fol-
low [43] to conduct user study on Amazon Mechanical Turk
following the A/B test protocol [9]. Each user is presented
with a video generated by our method and a baseline si-
multaneously during the user study. Then the user needs
to choose a more consistent one. For both datasets, we
randomly select test sequences with an input frame and 20
subsequent GT frames with significant camera motion, of
which each covers an extended range of footage. To com-

Input Ours Ours w/o Bias

Figure 4. Visual ablation study. The proposed camera-aware bias
benefits both the consistency between frames and image quality.

Method A/B vs. Ours FID↓
Ours (Full Model) – 57.22

– Decoupled P.E. 65.0% 70.47
– Camera-Aware Bias 73.8% 66.42
– Error Accumulation 56.3% 66.81

Table 4. Ablation study on Matterport3D in terms of long-term
view synthesis. We ablate aspects of our model to investigate their
influence on the results.

pare with PixelSynth, we randomly sample an input frame
and several outpainting directions to form a test sequence.

We report the quantitative comparisons in Table 2. For
both image quality and consistency, our method is sig-
nificantly better than other baselines, including geometry-
based and geometry-free ones. This is consistent with quali-
tative results, as shown in Figure 3 and Figure 5. On Matter-
port3D, the gap is even more prominent due to the view an-
gle changes being more significant. Notably, geometry-free
methods achieve better image quality on long-term view
synthesis. SynSin-6x performance is still not good, indicat-
ing that training previous methods on larger camera changes
helps but does not account for the main issue. In addition,
we follow past work to report PSNR and LPIPS in Table 3,
which are poor measures for extrapolation tasks [23, 43].
For example, though SynSin-6x usually produces entirely
gray results, as shown in Figure 5, its PSNR is good.

4.4. Ablation Study

We report some ablations of our method in terms of long-
term view synthesis on the Matterport3D dataset.
Camera-Aware Bias. As shown in Figure 4, the Camera-
Aware Bias improves the image quality and the consistency
between frames. Table 4 also confirms this observation,
indicating that bringing locality into autoregressive Trans-
former is critical, especially for consistency.
Decoupled positional embedding. We replace our decou-
pled positional embedding (P.E.) with a vanilla learnable
positional embedding. As shown in Table 4, both image
quality and consistency drop.
Error accumulation. As shown in Table 4, finetuning the
model by stimulating error accumulation benefits the long-
term view synthesis.
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Figure 5. Qualitative comparison between our method and baselines in terms of long-term view synthesis. Prior work is not capable of
synthesizing a consistent long-term scene video. Though our result is not the same as ground truth, it is perceptual consistency and of
high-fidelity. For more results, please refer to supplementary materials.

L=2 L=3 L=4 L=5

FID↓ 70.62 57.22 62.34 93.85
A/B vs. Ours 97.0% – 54.0% 49.0%

Table 5. Ablation study on length of video clips L.

Length of video clips. We compare our default length of
video clips with variants that modify the length during train-
ing. As shown in Table 5, the consistency improves sig-
nificantly when the length increase from 2 to 3. When the
length further increases to 5, the consistency remains nearly
unchanged. For the image quality, there is a significant drop
when we expand the length to 5. We hypothesize that the
numbers of tokens are too large that the Transformer is diffi-
cult to optimize. Considering the computation resource and
performance, we set the length of video clips to 3.

5. Discussion
Conclusion. We propose an autoregressive Transformer
based model to solve novel view synthesis, especially when

synthesizing long-term future in indoor 3D scenes. This
method leverages a locality constraint based on the input
cameras in self-attention to ensure consistency among gen-
erated frames. Our method can get superior performance
in novel view synthesis compared to the state-of-the-art ap-
proaches. To conclude, we take a further step to explore the
capabilities of geometry-free methods and manage to syn-
thesize consistent high-fidelity 3D scenes.

Limitations and Future Work. Nevertheless, there are
challenges remain. First, the current inference speed of the
autoregressive models is slower than vanilla models. Fur-
ther advancements in the autoregressive model still call for
need. Second, current metrics like PSNR and LPIPS are not
perfect to evaluate long-term view synthesis. New metrics
for this task deserve more attention.

Ethical Concerns. The datasets we use are web-crawled
videos or 3D real estate scans, which can not cover estates
from all the cultures and regions [54]. There may be poten-
tial bias in our model trained with these datasets.
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